

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

CINCINNATI TEST SYSTEMS 10100 Progress Way Harrison, OH 45030 able Phone: 513 202 8229

Tina Marable

CALIBRATION

Valid To: January 31, 2022 Certificate Number: 1667.01

In recognition of the successful completion of the A2LA evaluation process, accreditation is granted to this laboratory to perform the following calibrations^{1,5}:

I. Fluid Quantities

Parameter/Equipment	Range	CMC ² (±)	Comments
Flow –			
Calibration of Leak Standard (Dry Air, N ₂ , He)	(0.5 to 50 000) scc/min	1.4 % of rdg or 0.10 scc/min, whichever is greater	Comparison with precision flow meters
Calibrations of Leak Standards, Gas Flow into Vacuum or Atmosphere (Non- Flammable Gasses)	(1 × 10 ⁻⁵ to 5 × 10 ⁻¹) atm·cc/sec	6.5 % of rdg	Rate of rise primary calibration system
Calibrations of Leak Standards, Gas Flow into Vacuum (He)	$(1 \times 10^{-10} \text{ to } 9.9 \times 10^{-8}) \text{ atm·cc/sec}$ $(1 \times 10^{-7} \text{ to } 9.9 \times 10^{-7}) \text{ atm·cc/sec}$ $(1 \times 10^{-6} \text{ to } 9.9 \times 10^{-3}) \text{ atm·cc/sec}$	7.1 % of rdg 5.8 % of rdg 4.5 % of rdg	Mass spectrometer comparison calibration system
Calibration of Leak Standards, Gas Flow into Vacuum (He)	$(1 \times 10^{-5} \text{ to } 9.9 \times 10^{-3}) \text{ atm} \cdot \text{cc/sec}$	4.5 % of rdg	Mass spectrometer comparison calibration system – sniffer technique

Parameter/Equipment	Range	CMC ² (±)	Comments
Flow – Calibration of Flow Instruments ⁴	(50 to 20 000) scc/min	0.50 % of Full Scale	Direct comparison with Fluke Molbox 1+ and Laminar Molbloc
Flow – Calibration of Flow Instruments ^{3, 4}	(50 to 3000) scc/min	0.50 % of Full Scale	Direct comparison with 3 range flow controller
Pressure – Calibration of Pressure Instruments ⁴	(-14.7 to 1000) psi	0.05 % of Full Scale	Mensor CPC6000
Pressure – Calibration of Pressure Instruments ^{3, 4}	(-14.7 to 500) psi	0.05 % of Full Scale	Direct comparison with precision pressure standard

¹ This laboratory offers commercial calibration service on Leak Standards and Leak Test Equipment.

Page

² Calibration and Measurement Capability Uncertainty (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. CMCs represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Field calibration service is available for this calibration and this laboratory meets A2LA R104 – General Requirements: Accreditation of Field Testing and Field Calibration Laboratories for these calibrations. Please note the actual measurement uncertainties achievable on a customer's site can normally be expected to be larger than the CMC found on the A2LA Scope. Allowance must be made for aspects such as the environment at the place of calibration and for other possible adverse effects such as those caused by transportation of the calibration equipment. The usual allowance for the uncertainty introduced by the item being calibrated, (e.g. resolution) must also be considered and this, on its own, could result in the actual measurement uncertainty achievable on a customer's site being larger than the CMC.

⁴ This parameter applies to equipment manufactured by Cincinnati Test Systems only.

⁵ This scope meets A2LA's *P112 Flexible Scope Policy*.

Accredited Laboratory

A2LA has accredited

CINCINNATI TEST SYSTEMS

Harrison, OH

for technical competence in the field of

Calibration

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017

General requirements for the competence of testing and calibration laboratories. This laboratory also meets R205 – Specific Requirements: Calibration Laboratory Accreditation Program. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system

(refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

SEAL SORIAGE OF SOLIA

Presented this 16th day of January 2020.

Vice President, Accreditation Services
For the Accreditation Council

Certificate Number 1667.01

Valid to January 31, 2022