

ACERO DE HERRAMIENTAS

ACERO DE HERRAMIENTAS

Equivalencias

INDICE

	Gama de Productos		. 05
	Para Trabajos en Frio	1.2080	
O'CLASSIC.		1.2379	. 08
		1.2516	. 10
		1.2550	. 12
		1.2842	
	Para Trabajos en Caliente	1.2343	. 16
		1.2344	. 18
		1.2365	
		1.2714	. 22
		1.2767	. 24
	Rápidos	1.3343	. 26
THE STATE OF THE S	Para Moldes para Plástico	1.2311	. 28
		1.2312	
	Placas Portamoldes	C45E	. 04

ACERO DE HERRAMIENTAS

Equivalencias

Acero al Carbono

C45E

CK45

F1140

C45

XC48HI

1045

MNs				NORMAS				FABRICANTES	
	WNr	DIN 17350	UNE	UNI	AFNOR	AISI SAE	BÖHLER	UDDEHOLM	THYSSEN
	1.2080	X210Cr12	F 5212	X205Cr12KU	Z200C12	~D3	K100	SVERKER-1	THYRODUR 2080
	1.2436	X210CrW12	F 5213	X215CrW12	X210CrW12	~D6	K107	SVERKER3	THYRODUR 2436
	1.2379	X155CrVMo12.1	F 5211	X155CrVMo121KU	Z160CDV12	D2	K110	SVERKER21	THYRODUR 2379
rio	1.2842	90MnCrV8	F 5229	90MnVCr8KU	90MV8	~02	K720		THYRODUR 2842
para en Frio	1.2510	100MnCrW4	F 5220		90MWCV5	~01	K460	ARNE	THYRODUR 2510
Acero trabajos	1.2550	60WCrV7	F 5242	55WCrV8KU	55WC20	S1	K455	REGIN-3	THYRODUR 2550
tra	S1					S1			
	1.2516	120WV4	F 5238	100W4KU	105WC13	~F1			
	1.2303	UNI3097 100CrMo7		100CrMo7	100CD7				
		UNI2955 58SiMo8		58SiMo8KU	Y60SC7	~S5			
	1.2365	X32CrMoV33	F 5313	30CrMoV1227KU	30DCV28	H10	W320	QR80 QR90	THYROTHERM 2365
te	1.2343	X38CrMoV51	F 5317	X37CrMoV51KU	Z38CDV5	~H11	W300	ORVAR-1	THYROTHERM 2343
para n Caliente	1.2343R	DIN-17350 X38CrMoV51		X37CrMoV51KU		H11			
ero pa	1.2344	X40GrMoV51	F 5318	X40CrMoV51KU	Z40CDV5	H13	W302	ORVAR2M	THYROTHERM 2344
Acero trabajos en	1.2344R	DIN-17350 X40CrMoV51 ESR		X40CrMoV51ESR		H13			
tr	1.2714	56MiCrMoV7	F 5317	40NiCrMoV7KU	Y35NCD16	~L6	W500	ALVAR-14	THYROTHERM 2714
	1.2767	X45NiCrMo4		40NiCrMoV16KU	Y35NCD16		K600	CALMAX	THYRODUR 2767
Acero Rápido	1.3343	S6-5-2	F 5603	HS6-5-2	Z85WDCV 06-05-0402	M2	S600		THYRORAPID 3343
Moldes Plástico	1.2311	40CrMnMo7	F 5303	35CrMo8-KU	35CMD7	~P20		UDDAX	THYROPLAST 2311
para M para Pla	1.2312	40CrMnMoS8.6			40CMD8S		M200	HOLDAX	THYROPLAST 2312
	Placas Portamoldes (Norma EN10083)								

THYRODOR 1730

Gama de Productos

Pelado / Torneado Laminado / Forjado Pelado / Torneado Pelado / Torneado Laminado / Forjado Pelado / Torneado Laminado / Forjado Pelado / Torneado Pelado Pelado / Torneado	Recocido	10 ÷ 603 12 ÷ 406 10 ÷ 723 10 ÷ 503 12 ÷ 406 20 ÷ 303	20 ÷ 150 20 ÷ 200 20 ÷ 200	40 x 10 ÷ 300 x 80 40 x 10 ÷ 600 x 300 50 x 30 ÷ 600 x 300 40 x 10 ÷ 300 x 60 40 x 10 ÷ 600 x 300	20 ÷ 60 20 ÷ 300 20 ÷ 300
Laminado / Forjado Pelado / Torneado Pelado / Torneado Laminado / Forjado Pelado / Torneado Laminado / Forjado Pelado Pelado Pelado Pelado / Torneado	Recocido Recocido Recocido Recocido Recocido Recocido Recocido Recocido Recocido	12 ÷ 406 10 ÷ 723 10 ÷ 503 12 ÷ 406	20 ÷ 200	40 x 10 ÷ 600 x 300 50 x 30 ÷ 600 x 300 40 x 10 ÷ 300 x 60	20 ÷ 300
Pelado / Torneado Pelado / Torneado Laminado / Forjado Pelado / Torneado Laminado / Forjado Pelado Pelado / Torneado Pelado / Torneado	Recocido Recocido Recocido Recocido Recocido Recocido Recocido	10 ÷ 723 10 ÷ 503 12 ÷ 406	20 ÷ 200	40 x 10 ÷ 600 x 300 50 x 30 ÷ 600 x 300 40 x 10 ÷ 300 x 60	20 ÷ 300
Pelado / Torneado Laminado / Forjado Pelado / Torneado Laminado / Forjado Pelado Pelado Pelado / Torneado	Recocido Recocido Recocido Recocido Recocido Recocido	10 ÷ 723 10 ÷ 503 12 ÷ 406		50 x 30 ÷ 600 x 300 40 x 10 ÷ 300 x 60	
Laminado / Forjado Pelado / Torneado Laminado / Forjado Pelado Pelado Pelado / Torneado Pelado / Torneado	Recocido Recocido Recocido Recocido Recocido	10 ÷ 503 12 ÷ 406		40 x 10 ÷ 300 x 60	20 ÷ 300
Pelado / Torneado Laminado / Forjado Pelado Pelado Pelado / Torneado Pelado / Torneado	Recocido Recocido Recocido Recocido	12 ÷ 406		40 x 10 ÷ 300 x 60	20 ÷ 300
Laminado / Forjado Pelado Pelado / Torneado Pelado / Torneado	Recocido Recocido Recocido	12 ÷ 406	20 ÷ 200		20 ÷ 300
Pelado / Torneado Pelado / Torneado	Recocido Recocido		20 ÷ 200		20 ÷ 300
Pelado / Torneado Pelado / Torneado	Recocido			40 x 10 ÷ 600 x 300	20 ÷ 300
Pelado / Torneado		20 ÷ 303			
	Recocido				
_		12 ÷ 406		40 x 10 ÷ 600 x 300	20 ÷ 300
Rectificado	Recocido	4 ÷ 25			
Pelado / Torneado	Recocido	91 ÷ 403			
Pelado / Torneado	Recocido	20 ÷ 383			
Pelado / Torneado	Recocido	30,8 ÷ 403			
Pelado / Torneado	Recocido	20,5 ÷ 413			
Laminado / Forjado	Recocido		80 ÷ 150		
Torneado	Recocido	423 ÷ 703			
Pelado / Torneado	Recocido	20,8 ÷ 503			
Laminado / Forjado	Recocido	513 ÷703	40 x 10 ÷ 800 x 300		
Torneado	Recocido	513 ÷ 703			
Torneado Bo	onificado 1250/1400 N/mm	² 91 ÷ 843			200 ÷ 600
Pelado / Forjado	Recocido	202 ÷ 853			200 . 000
Pelado / Torneado	Recocido	20,8 ÷ 353			
Laminado / Forjado	Recocido				
Calibrado	Recocido	5,3 ÷ 20,5			
Pelado	Recocido	21,5 ÷ 152,5			
Pelado	Bonificado	25 ÷ 102			20 - 450
Torneado	Bonificado	112 ÷ 703			20 ÷ 450
Pelado	Bonificado	25 ÷ 102			20 ÷ 450
Torneado	Bonificado	263 ÷ 703			20 + 400

16 ÷ 1000

16 ÷ 550

20 x 5 ÷ 205 x 60

225 x 25 ÷ 2000 x 6000

ACERO DE HERRAMIENTAS TRABAJOS EN FRIO

1.2080

• Composición Química

• Equivalencias Internacionales

W.nr	1.2080
Din 17350	X210Cr12
AFNOR	Z200C12
UNI	X205Cr12KU
AISI/SAE	D3
BS	BD3
SIAU	K12

Características Generales

Es uno de los aceros más utilizados dentro del grupo de los indeformables de elevado contenido en C y Cr.

Su composición química le confiere una gran resistencia al desgaste y templabilidad.

Templa al aire en pequeños espesores, aunque normalmente se templa en aceite.

Otros elementos de aleación pueden ser adicionados para mejorar determinadas características. Los elementos más comunes son el V y W.

Las características más significativas son:

- Elevada resistencia al desgaste.
- Elevada dureza superficial.
- Discreta estabilidad dimensional.

Aplicaciones

Se emplea para la fabricación de Herramientas para:

- Matrices de corte de grandes series.
- Útiles para prensado, doblado, acuñado.
- Matrices de corte para chapa magnética.
- Útiles de medición.
- Herramientas para trabajar papel, madera, caucho, etc...

Estado de Suministro

Recocido de globulización <240HB.

• Tratamientos Térmicos de uso

Eliminación de tensiones: Después del mecanizado en desbaste es necesaria la realización de un tratamiento de eliminación de tensiones, que consiste en una calentamiento lento y homogéneo en toda la masa a temperatura de 650/700°C, con enfriamiento posterior lento hasta temperatura ambiente.

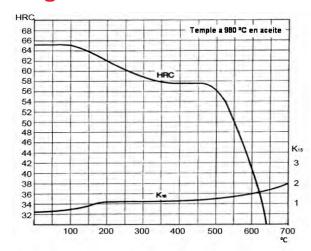
Temple:

- **Precalentamiento:** Calentar las piezas homogéneamente con mantenimiento de igualación a temperatura entre 750 y 800°C.
- **Austenización:** La tª de austenización estará comprendida entre 950 y 1000°C con mantenimiento en función del espesor de la pieza. (mínimo 1/2 hora/pulgada).

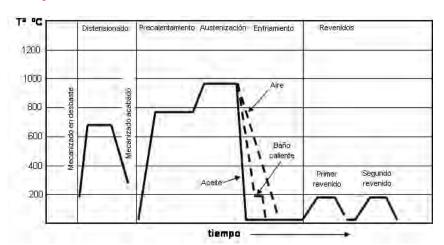
- Enfriamiento:

- En aire en piezas pequeñas de poco espesor
- En baño de aceite (máxima dureza).
- Temple martensítico (Martempering).

Revenido: Se debe realizar inmediatamente después del temple. La máxima dureza y resistencia al desgaste se obtiene tras revenido a 150/200°C. El tiempo de permanencia será de 2 h. por pulgada de espesor, seguido de enfriamiento al aire en calma. Se recomienda realizar doble revenido.


Dureza de trabajo: Las durezas que se obtienen tras el temple son de 60/63 HRc.

• Observaciones:


En estos ciclos térmicos, se deberá proteger la superficie de las piezas para evitar oxidaciones y/o descarburaciones.

Tratamiento	Temperatura (ºC)	Enfriamiento
Eliminación de tensiones	650/700	Horno/Aire
Precalentamiento	750/800	-
Temple	950/1000	Aire/Aceite
Revenido	150/200	Aire

Esquema de secuencia en el tratamiento térmico

ELECTROEROSION

Este tipo de acero puede electroerosionarse en estado recocido o tratado. En este segundo caso es necesario dar un revenido posterior a una temperatura inferior a la del revenido.

RECTIFICADO

La operación de rectificado puede originar microfisuras en la superficie de las herramientas debido a sobrecalentamientos locales por efecto de la abrasión de los granos de las muelas.

Es conveniente utilizar refrigeración abundante, muelas con grano blando, velocidades adecuadas, y evitar sobrepresiones en las entradas de la muela a la herramienta.

ACERO DE HERRAMIENTAS TRABAJOS EN FRIO

1.2379

• Composición Química

C	Mn	Si	Cr	Mo	V
1.50	0.15	0.10	11.00	0.60	0.90
1.60	0.45	0.40	12.00	0.80	1.10

• Equivalencias Internacionales

W.nr	1.2379
Din 17350	X155CrVMo121
AFNOR	Z160CDV12
UNI	. X155CrVMo121KU
AISI/SAE	D2
EN	X16055CrMoV12
BS	BD2
SIAU	KORV

Características Generales

Pertenece este acero al grupo de los indeformables de elevado contenido en C y Cr. La adición de Mo y V le permite obtener durezas máximas en el temple al aire incluso en perfiles gruesos.

Posee gran resistencia al desgaste como consecuencia del elevado contenido en C. Este tipo de acero está diseñado para soportar las mayores exigencias en utillajes para trabajos en frío.

Las características más significativas son :

- Apto para temple al aire en grandes espesores.
- Elevada resistencia al desgaste.
- Buena tenacidad.
- Alta resistencia a la compresión.
- Elevada dureza superficial
- Excelente estabilidad dimensional.
- Puede ser sometido a tratamiento de nitruración.

Aplicaciones

Herramientas para:

- Punzones o matrices de corte con alto rendimiento.
- Útiles prensado, doblado, acuñado o estirado en frío.
- Cilindros conformadores, enderezadores, etc...
- Peines de roscar.
- Útiles de medición.
- Moldes de plástico de gran resistencia al desgaste.

Todas las herramientas fabricadas y acabadas con este tipo de acero son susceptibles de ser tratados superficialmente en caliente (Nitruración o aportes superficiales) para mejorar las condiciones de resistencia al desgaste, lubricación, etc..., sin deterioro de las características obtenidas tras el temple y revenido.

Estado de Suministro

Recocido de globulización <245 HB.

Tratamientos Térmicos de uso

Eliminación de tensiones: Después del mecanizado en desbaste es necesaria la realización de un tratamiento de eliminación de tensiones, que consiste en una calentamiento lento y homogéneo en toda la masa a temperatura de 650°C, enfriamiento posterior lento hasta 500°C, y finalmente al aire en calma hasta temperatura ambiente.

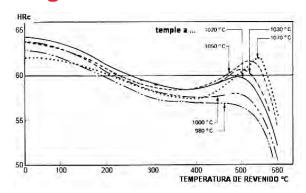
Temple:

- **Precalentamiento:** Calentar las piezas homogéneamente con mantenimientos de igualación a temperaturas de 400, 650 y 850°C.
- **Austenización:** La tª de austenización estará comprendida entre 980 y 1050°C con mantenimiento en función del espesor de la pieza(mínimo 1/2 hora/por pulgada).
- Cuando se pretende conseguir endurecimiento secundario por precipitación de carburos, la temperatura de austenización se fijará en 1040 -1080°C.

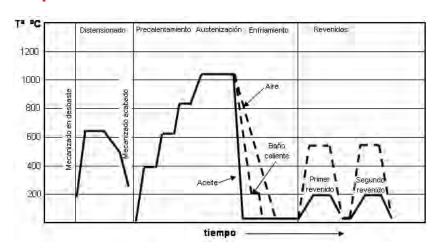
- Enfriamiento:

- En aire o aire forzado.
- En baño de aceite (máxima dureza).
- Temple martensítico (Martempering).

Revenido: Se deben realizar 2 revenidos inmediatamente después del temple. La temperatura se determinará con el diagrama de revenido. El tiempo de permanencia será de 2h por pulgada de espesor, seguido de enfriamiento al aire en calma. La dureza secundaria se obtiene con revenido efectuado entre 520 y 550°C.


Dureza de trabajo: Las durezas que se obtienen tras el temple son de 58/60 HRc.

• Observaciones:


En estos ciclos térmicos, se deberá proteger la superficie de las piezas para evitar oxidaciones y/o descarburaciones.

Tratamiento	Temperatura (ºC)	Enfriamiento
Eliminación de tensiones	650	Horno/Aire
Precalentamiento	400/650/850	-
Temple	980/1080	Aire/Aceite
Revenido	180/550	Aire

Esquema de secuencia en el tratamiento térmico

NITRURACION

Este tipo de acero admite tratamiento de nitruración recomendándose el ciclo de endurecimiento secundario en el temple y revenido previos. A continuación se nitrurarán las piezas a 525°C, obteniéndose profundidades de capa entre 0,25 y 0,35 mm.

ELECTROEROSION

Este tipo de acero puede electroerosionarse en estado recocido o tratado. En este segundo caso es necesario dar un revenido posterior a una temperatura inferior a la del revenido.

RECTIFICADO

La operación de rectificado puede originar microfisuras en la superficie de las herramientas debido a sobrecalentamientos locales por efecto de la abrasión de los granos de las muelas.

En general la sensibilidad a la fisuración aumenta en la medida que disminuye la temperatura de revenido. Es conveniente utilizar refrigeración abundante, muelas con grano blando, velocidades adecuadas, y evitar sobrepresiones en las entradas de la muela a la herramienta.

ACERO DE HERRAMIENTAS TRABAJOS EN FRIO

1.2516

• Composición Química

С	Mn	Si	Cr	V	W	
1.15 1.25	0.20 0.35	0.15 0.30	0.15 0.25	0.07 0.12	0.90 1.10	

• Equivalencias Internacionales

W.nr	1.2516
Din 17350	120WV4
AFNOR	105WCr13
UNI	100W4KU
AISI/SAE	F1
SIAU	SV

• Características Generales

Acero usado en numerosas aplicaciones en utillajes para trabajo en frío.

La adición de W le confiere a este acero una excelente resistencia al desgaste.

Es el más indeformable de los aceros de temple en agua y en secciones pequeñas se puede templar en aceite.

Presenta una elevada dureza y capacidad de corte no rápido en frío.

Las características más significativas son:

- Elevada resistencia al desgaste...
- Elevada dureza superficial.
- Alta estabilidad dimensional.

Aplicaciones

Se emplea para:

- Herramientas, en general, de corte no rápido.
- Terrajas y machos de roscar, sierras, etc.
- Herramientas de embutición.
- Herramientas para trabajar madera, caucho etc...

Estado de Suministro

Recocido de globulización <220HB.

• Tratamientos Térmicos de uso

Eliminación de tensiones: Después del mecanizado en desbaste es necesaria la realización de un tratamiento de eliminación de tensiones, que consiste en una calentamiento lento y homogéneo en toda la masa a temperatura de 600/650°C, con enfriamiento posterior lento hasta temperatura ambiente...

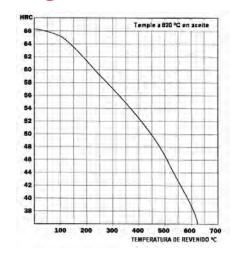
Temple:

- **Precalentamiento:** Calentar las piezas homogéneamente con mantenimiento de igualación a temperatura de 650°C.
- **Austenización:** La tª de austenización estará comprendida entre 780 y 820°C con mantenimiento en función del espesor de la pieza. (mínimo 1/2 hora/pulgada).

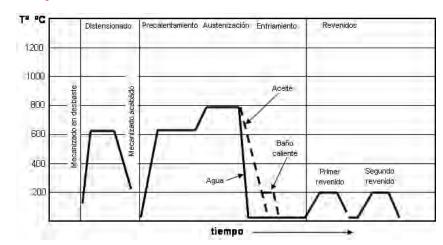
- Enfriamiento:

- En aceite en piezas pequeñas de poco espesor.
- En baño de agua (máxima dureza).
- Temple martensítico (Martempering).

Revenido: Se debe realizar inmediatamente después del temple. La máxima dureza y resistencia al desgaste se obtiene tras revenido a 150/220°C. El tiempo de permanencia será de 2 h. por pulgada de espesor, seguido de enfriamiento al aire en calma. Se recomienda realizar doble revenido.


Dureza de trabajo: Las durezas que se obtienen tras el temple son de 60/62 HRc.

• Observaciones:


En estos ciclos térmicos, se deberá proteger la superficie de las piezas para evitar oxidaciones y/o descarburaciones.

Tratamiento	Temperatura (ºC)	Enfriamiento
Eliminación de tensiones	600/650	Horno/Aire
Precalentamiento	650	-
Temple	780/820	Agua/Aceite
Revenido	150/220	Aire

• Esquema de secuencia en el tratamiento térmico

ELECTROEROSION

Este tipo de acero puede electroerosionarse en estado recocido o tratado. En este segundo caso es necesario dar un revenido posterior a una temperatura inferior a la del revenido.

RECTIFICADO

La operación de rectificado puede originar microfisuras en la superficie de las herramientas debido a sobrecalentamientos locales por efecto de la abrasión de los granos de las muelas.

Es conveniente utilizar refrigeración abundante, muelas con grano blando, velocidades adecuadas, y evitar sobrepresiones en las entradas de la muela a la herramienta.

ACERO DE HERRAMIENTAS TRABAJOS EN FRIO

1.2550

• Composición Química

С	Mn	Si	Cr	V	W
0.55	0.15	0.50	0.90	0.10	1.80
0.65	0.45	0.70	1.20	0.20	2.10

• Equivalencias Internacionales

W.nr	1.2550
Din 17350	60WCrV7
AFNOR	55WC20
UNI	55WCrV8KU
BS	BS1
SIAU	2550

Características Generales

Acero de medio carbono y adición de tungsteno resistente a los impactos y con notables características de corte, resistencia al desgaste y tenacidad.

Se emplea generalmente para útiles de trabajo en frío, pero puede utilizarse para herramientas de trabajo en caliente cuando se busca resistencia y tenacidad y no se precisa una resistencia en caliente elevada.

Las características más significativas son:

- Elevada resistencia a los impactos violentos.
- Alta tenacidad.
- Notable estabilidad dimensional.

Aplicaciones

Se emplea para la fabricación de Herramientas para:

- Punzones perforadores.
- Cinceles, buriles, galgas, etc...
- Útiles para máquinas neumáticas de demolición.
- Herramientas para trabajar madera etc...

Estado de Suministro

Recocido de Ablandamiento <220HB.

• Tratamientos Térmicos de uso

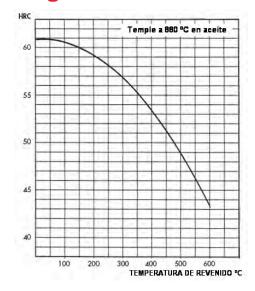
Eliminación de tensiones: Después del mecanizado en desbaste es necesaria la realización de un tratamiento de eliminación de tensiones, que consiste en una calentamiento lento y homogéneo en toda la masa a temperatura de 600/650°C, con enfriamiento posterior lento hasta tª ambiente.

Temple:

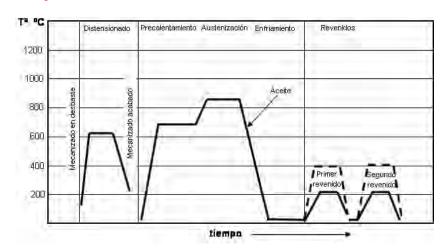
- **Precalentamiento:** Calentar las piezas homogéneamente con mantenimiento de igualación a temperatura entre 650 y 700°C.
- **Austenización:** La temperatura de austenización estará comprendida entre 880 y 900°C con mantenimiento en función del espesor de la pieza y tomando como referencia 1/2 hora/pulgada.
- **Enfriamiento:** El temple de este acero debe de efectuarse en aceite.

Revenido: Se debe realizar inmediatamente después del temple. Las herramientas que deban trabajar en frío se revienen entre 180-250°C. Las que lo hagan en caliente a 400°C. El tiempo de permanencia será de 1 h. por pulgada de espesor, seguido de enfriamiento al aire en calma. Se recomienda realizar doble revenido.

Dureza de trabajo: Las durezas que se obtienen tras el temple son de:


Trabajo en frío: 56-58 HRc.Trabajo en caliente: 53-55 HRc

• Observaciones:


En estos ciclos térmicos, se deberá proteger la superficie de las piezas para evitar oxidaciones y/o descarburaciones.

Tratamiento	Temperatura (ºC)	Enfriamiento	
Eliminación de tensiones	600/650	Horno/Aire	
Precalentamiento	650/700	-	
Temple	880/900	Aceite	
Revenido	180/250 ó 400	Aire	

Esquema de secuencia en el tratamiento térmico

ELECTROEROSION

Este tipo de acero puede electroerosionarse en estado recocido o tratado. En este segundo caso es necesario dar un revenido posterior a una temperatura inferior a la del revenido.

RECTIFICADO

La operación de rectificado puede originar microfisuras en la superficie de las herramientas debido a sobrecalentamientos locales por efecto de la abrasión de los granos de las muelas.

Es conveniente utilizar refrigeración abundante, muelas con grano blando, velocidades adecuadas, y evitar sobrepresiones en las entradas de la muela a la herramienta.

ACERO DE HERRAMIENTAS TRABAJOS EN FRIO

1.2842

• Composición Química

• Equivalencias Internacionales

W.nr	1.2842
Din 17350	90MnCrV8
AFNOR	90MV8
UNI	. 90MnVCr8KU
AISI/SAE	02
BS	B02
SIAU	F

Características Generales

Pertenece este acero al grupo de los indeformables de temple en aceite.

Tiene una aceptable templabilidad, dureza e indeformabilidad suficiente tras el tratamiento térmico siendo uno de los aceros más económicos de los indeformables de trabajo en frío.

Es muy utilizado en perfiles pequeños y medios.

En el temple en aceite se aseguran unas distorsiones mínimas y convenientemente tratado puede utilizarse en gran número de piezas.

Las características más significativas son :

- Buena resistencia al desgaste.
- Alta dureza superficial.
- Discreta estabilidad dimensional.
- Buena templabilidad.

Aplicaciones

Se emplea para la fabricación de Herramientas para:

- Punzonar, embutir, trocear y cortar.
- Útiles de cortar madera y cartón.
- Rodillos de perfilar, rebordear y todas aquellas partes de maquinaria sometidas a desgaste y abrasión.
- Útiles de medición.
- Herramientas para acuñado, estirado etc...

Estado de Suministro

Recocido de globulización <220HB.

• Tratamientos Térmicos de uso

Eliminación de tensiones: Después del mecanizado en desbaste es necesaria la realización de un tratamiento de eliminación de tensiones, que consiste en una calentamiento lento y homogéneo en toda la masa a temperatura de 600/650°C, con enfriamiento posterior lento hasta temperatura ambiente.

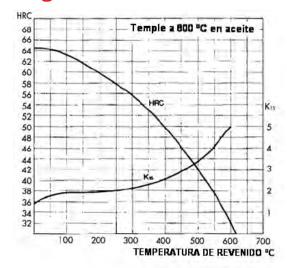
Temple:

- **Precalentamiento:** Calentar las piezas homogéneamente con mantenimiento de igualación a temperatura entre 650 y 700°C.
- **Austenización:** La tª de austenización estará comprendida entre 760 y 800º C con mantenimiento en función del espesor de la pieza. (mínimo 1/2 hora/pulgada).

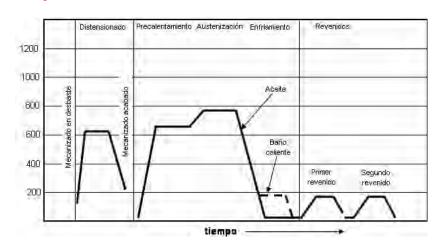
- Enfriamiento:

- En baño de aceite (máxima dureza).
- Temple martensítico (Martempering).

Revenido: Se debe realizar inmediatamente después del temple. La máxima dureza y resistencia al desgaste se obtiene tras revenido a 150/200°C. El tiempo de permanencia será de 2 h. por pulgada de espesor, seguido de enfriamiento al aire en calma. Se recomienda realizar doble revenido.


Dureza de trabajo: Las durezas que se obtienen tras el temple son de 59/61 HRc.

Observaciones:


En estos ciclos térmicos, se deberá proteger la superficie de las piezas para evitar oxidaciones y/o descarburaciones.

Tratamiento	Temperatura (ºC)	Enfriamiento		
Eliminación de tensiones	600/650	Horno/Aire		
Precalentamiento	650/700	-		
Temple	760/800	Aceite		
Revenido	150/200	Aire		

• Esquema de secuencia en el tratamiento térmico

ELECTROEROSION

Este tipo de acero puede electroerosionarse en estado recocido o tratado. En este segundo caso es necesario dar un revenido posterior a una temperatura inferior a la del revenido.

RECTIFICADO

La operación de rectificado puede originar microfisuras en la superficie de las herramientas debido a sobrecalentamientos locales por efecto de la abrasión de los granos de las muelas.

Es conveniente utilizar refrigeración abundante, muelas con grano blando, velocidades adecuadas, y evitar sobrepresiones en las entradas de la muela a la herramienta.

ACERO DE HERRAMIENTAS TRABAJOS EN CALIENTE

1.2343

• Composición Química

С	Mn	Si	Cr	Мо	V		
0.36 0.42	0.30 0.50	0.90 1.20	4.80 5.50	1.10 1.40	0.25 0.50		

• Equivalencias Internacionales

W.nr	1.2343
Din 17350	X38CrMoV51
AFNOR	Z38CDV5
UNI	. X37CrMoV51KU
AISI/SAE	H11
BS	BH11
SIAU	MTB

Características Generales

Acero con elevadas características de resistencia al desgaste en caliente asociadas a una insensibilidad a la fatiga térmica.

El elevado porcentaje de elementos como el Cr y Mo confiere a este acero una elevada templabilidad lo que le hace singularmente indicado para la fabricación de piezas en las que se precise una gran uniformidad de características y elevada resistencia.

Posee asimismo, una elevada tenacidad por lo que resulta adecuado para empleos en las que las condiciones de servicio sean particularmente gravosas.

Aplicaciones

Acero para herramientas de trabajos en caliente sometidas a temperaturas entre 300 y 550 °C con ciclos térmicos constantes y de aplicación generalizada.

Admite refrigeración en servicio. Herramientas para:

- Moldes para fusión bajo presión de aleaciones ligeras.
- Moldes para materias plásticas.
- Matrices para extrusión de aluminio.
- Cuchillas para cizallado en caliente.
- Punzones y matrices para prensas de forja.

• Estado de Suministro

Recocido de globulización <220HB.

• Tratamientos Térmicos de uso

Eliminación de tensiones: Después del mecanizado en desbaste es necesaria la realización de un tratamiento de eliminación de tensiones, que consiste en una calentamiento lento y homogéneo en toda la masa a temperatura de 650°C, enfriamiento posterior lento hasta 300°C y finalmente al aire en calma hasta temperatura ambiente.

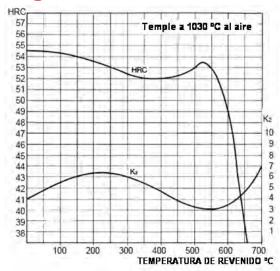
Temple:

- Precalentamiento: Calentar las piezas homogéneamente con mantenimiento de igualación a t^a de 400, 650 y 880°C.
- **Austenización:** La tª de austenización estará comprendida entre 1000 y 1030°C con mantenimiento en función del espesor de la pieza (mínimo 1/2 hora/pulgada).

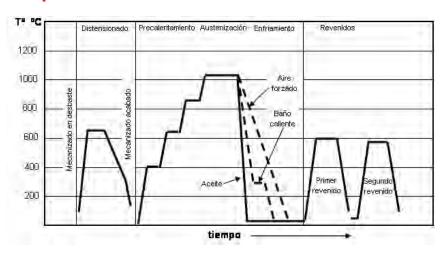
- Enfriamiento:

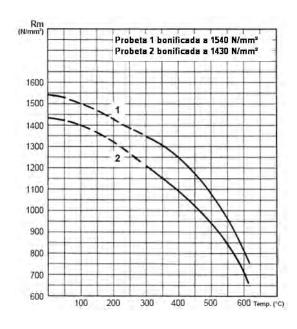
- En aire forzado para pequeñas secciones.
- En baño de aceite (máxima dureza).
- Temple martensítico (Martempering) con mínimas deformaciones.

Revenido: Se debe realizar inmediatamente después del temple. Se debe efectuar un primer revenido para alcanzar la máxima dureza secundaria que ofrece este tipo de acero (Ver diagrama de revenido). El segundo revenido estará orientado a alcanzar la dureza de aplicación que se desee y, por tanto, la temperatura se fijará en función del diagrama de revenido. El tiempo de permanencia será como mínimo de 1h. por pulgada de espesor.


Dureza de trabajo: Las durezas que se obtienen tras el temple son de 52/55 HRc.

• Observaciones:


En estos ciclos térmicos, se deberá proteger la superficie de las piezas para evitar oxidaciones y/o descarburaciones.


Tratamiento	Temperatura (ºC)	Enfriamiento	
Eliminación de tensiones	650	Horno/Aire	
Precalentamiento	400/650/880	-	
Temple	1000/1030	Aire/Aceite	
Revenido	550/650	Aire	

Esquema de secuencia en el tratamiento térmico

Características mecánicas en caliente

NITRURACION

Los útiles fabricados con este tipo de acero admiten tratamiento de nitruración gaseosa o en baño de sales. Se obtienen durezas superficiales entre 1000-1200 HV con capas de hasta 0,30 mm. de espesor.

ELECTROEROSION

Este tipo de acero puede electroerosionarse en estado recocido o tratado. En este segundo caso es necesario dar un revenido posterior a una temperatura inferior a la del revenido.

RECTIFICADO

La operación de rectificado puede originar microfisuras en la superficie de las herramientas debido a sobrecalentamientos locales por efecto de la abrasión de los granos de las muelas.

En general la sensibilidad a la fisuración aumenta en la medida que disminuye la temperatura de revenido. Es conveniente utilizar refrigeración abundante, muelas con grano blando, velocidades adecuadas, y evitar sobrepresiones en las entradas de la muela a la herramienta.

<u>ACERO DE HERRAMIENTAS TRABAJOS EN CALIENTE</u>

1.2344

• Composición Química

С	Mn	Si	Cr	Мо	V		
0.37 0.43	0.30 0.50	0.90 1.20	0.48 5.50	1.20 1.50	0.90 1.10		

• Equivalencias Internacionales

W.nr	1.2344
Din 17350	X40CrMoV51
UNI	X40CrMoV51KU
AISI/SAE	H13
BS	BH13
SIAU	MTV

• Características Generales

Por su composición química, el acero 1.2344 presenta las mejores características en caliente de los de la familia de 5% de Cr.

Está dotado de una dureza y resistencia al desgaste a altas temperaturas muy elevadas, y es asimismo, muy resistente a la fatiga térmica producida por calentamientos y enfriamientos cíclicos. Se diferencia del 1.2343 por su más alto contenido en Vanadio.

El Vanadio, formador de carburos de gran dureza, hace que el 1.2344 sea ligeramente más resistente al desgaste que el ya mencionado 1.2343. Esta característica le hace especialmente adecuado para soportar las severas condiciones de trabajo de los utillajes para trabajo en caliente presentando las siguientes características:

- Homogeneidad estructural.
- Elevada tenacidad en caliente.
- Máxima resistencia a la fisuración térmica y mecánica.
- Regularidad de características mecánicas.

Aplicaciones

Acero para herramientas de trabajos en caliente sometidas a temperaturas entre 300 y 600°C con ciclos térmicos constantes y de aplicación generalizada. Admite refrigeración en servicio. Herramientas para:

- Moldes para fusión bajo presión de aleaciones ligeras.
- Moldes para materias plásticas
- Matrices para extrusión de aluminio
- Cuchillas para cizallado en caliente.
- Punzones y matrices para prensas de forja.

Estado de Suministro

Recocido Globular =<220HB.

• Tratamientos Térmicos de uso

Eliminación de tensiones: Después del mecanizado en desbaste es necesaria la realización de un tratamiento de eliminación de tensiones, que consiste en una calentamiento lento y homogéneo en toda la masa a temperatura de 650°C, enfriamiento posterior lento hasta 300°C, y finalmente al aire en calma hasta temperatura ambiente.

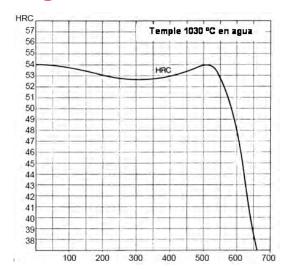
Temple:

- **Precalentamiento:** Calentar las piezas homogéneamente con mantenimiento de igualación a temperatura de 400, 650 y 880°C.
- **Austenización:** La tª de austenización estará comprendida entre 1000 y 1050°C con mantenimiento en función del espesor de la pieza (mínimo 1/2 hora/pulgada).

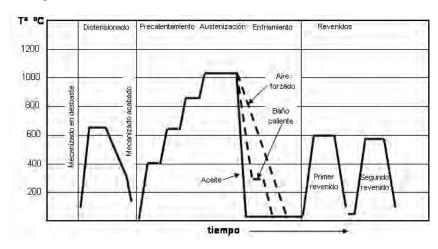
- Enfriamiento:

- En aire forzado para pequeñas secciones.
- En baño de aceite (máxima dureza).
- Temple martensítico (Martempering) con mínimas deformaciones.

Dureza de trabajo: Las durezas que se obtienen tras el temple son de 53/56 HRc.


Revenido: Se debe realizar inmediatamente después del temple. Se debe efectuar un primer revenido para alcanzar la máxima dureza secundaria que ofrece este tipo de acero (ver diagrama de revenido). El segundo revenido estará orientado a alcanzar la dureza de aplicación que se desee, y por tanto, la temperatura se fijará en función del diagrama de revenido. El tiempo de permanencia será como mínimo de 1 h. por pulgada de espesor.

• Observaciones:


En estos ciclos térmicos, se deberá proteger la superficie de las piezas para evitar oxidaciones y/o descarburaciones.

Tratamiento	Temperatura (ºC)	Enfriamiento		
Eliminación de tensiones	650	Horno/Aire		
Precalentamiento	400-650-880	-		
Temple	1000/1050	Aire/Aceite		
Revenido	550/630	Aire		

• Esquema de secuencia en el tratamiento térmico

• Características mecánicas en caliente

NITRURACION

Los útiles fabricados con este tipo de acero admiten tratamiento de nitruración gaseosa o en baño de sales. Se obtienen durezas superficiales entre 1000-1200 HV con capas de hasta 0,30 mm de espesor.

ELECTROEROSION

Este tipo de acero puede electroerosionarse en estado recocido o tratado. En este segundo caso es necesario dar un revenido posterior a una temperatura inferior a la del revenido.

RECTIFICADO

La operación de rectificado puede originar microfisuras en la superficie de las herramientas debido a sobrecalentamientos locales por efecto de la abrasión de los granos de las muelas.

En general la sensibilidad a la fisuración aumenta en la medida que disminuye la temperatura de revenido. Es conveniente utilizar refrigeración abundante, muelas con grano blando, velocidades adecuadas, y evitar sobrepresiones en las entradas de la muela a la herramienta.

<u>ACERO DE HERRAMIENTAS TRABAJOS EN CALIENTE</u>

1.2365

• Composición Química

С	Mn	Si	Cr	Мо	V		
0.28 0.35	0.15 0.45	0.10 0.40	2.70 3.20	2.60 3.00	0.40 0.70		

Equivalencias Internacionales

W.nr	1.2365
Din 17350	X32CrMoV33
AFNOR	30DCV28
UNI	X30CrMoV1227KU
AISI/SAE	H10
BS	BH10
SIAU	MT33V

Características Generales

El diseño de composición química que presenta este tipo de acero, principalmente su alto contenido en Mo, le hace apropiado para la fabricación de útiles de trabajo a alta temperatura y de gran responsabilidad.

Se caracteriza por:

- Gran resistencia a la abrasión a alta y baja temperatura.
- Alta resistencia a la fatiga térmica y mecánica.
- Alto nivel de tenacidad.
- Gran resistencia al revenido.
- Buenas características mecánicas tras el bonificado.

Aplicaciones

Acero para herramientas de trabajos en caliente sometidas a t^a entre 300 y 600°C. Admite refrigeración en servicio.

Herramientas para:

- Moldes para fusión bajo presión de aleaciones pesadas con elevada temperatura de fusión.
- Camisas, mandrinos, y otras piezas para prensas de extrusión.
- Herramientas para la producción de tornillos, insertos etc...

• Estado de Suministro

Recocido Globular =<200HB.

• Tratamientos Térmicos de uso

Eliminación de tensiones: Después del mecanizado en desbaste es necesaria la realización de un tratamiento de eliminación de tensiones, que consiste en una calentamiento lento y homogéneo en toda la masa a temperatura de 600-650°C, enfriamiento posterior lento hasta 400-300°C, y finalmente al aire en calma hasta temperatura ambiente.

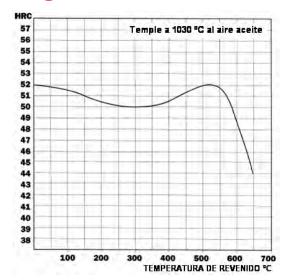
Temple:

- **Precalentamiento:** Calentar las piezas homogéneamente con mantenimiento de igualación a temperatura de 400, 650 y 850°C.
- **Austenización:** La tª de austenización estará comprendida entre 1020 y 1050°C con mantenimiento en función del espesor de la pieza (mínimo 1/2 hora/pulgada).

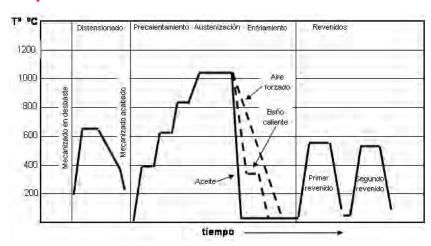
- Enfriamiento:

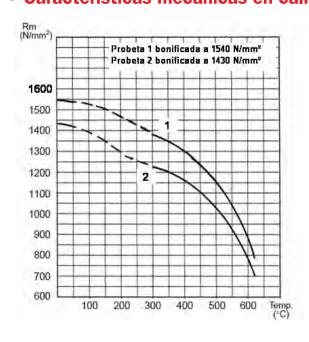
- En aire forzado para pequeñas secciones.
- En baño de aceite (máxima dureza).
- Temple martensítico (Martempering) con mínimas deformaciones.

Dureza de trabajo: Las durezas que se obtienen tras el temple son de 50/55 HRc.


Revenido: Se debe realizar inmediatamente después del temple. Se debe efectuar un primer revenido para alcanzar la máxima dureza secundaria que ofrece este tipo de acero. El segundo revenido estará orientado a alcanzar la dureza de aplicación que se desee, y por tanto, la temperatura se fijará en función del diagrama de revenido. El tiempo de permanencia será como mínimo de 1h. por pulgada de espesor.

• Observaciones:


En estos ciclos térmicos, se deberá proteger la superficie de las piezas para evitar oxidaciones y/o descarburaciones.


Tratamiento	Temperatura (ºC)	Enfriamiento		
Eliminación de tensiones	650	Horno/Aire		
Precalentamiento	400/650/850	-		
Temple	1020/1050	Aire/Aceite		
Revenido	550/640	Aire		

Esquema de secuencia en el tratamiento térmico

• Características mecánicas en caliente

NITRURACION

Los útiles fabricados con este tipo de acero admiten tratamiento de nitruración gaseosa o en baño de sales.

ELECTROEROSION

Este tipo de acero puede electroerosionarse en estado recocido o tratado. En este segundo caso es necesario dar un revenido posterior a una temperatura inferior a la del revenido.

RECTIFICADO

La operación de rectificado puede originar microfisuras en la superficie de las herramientas debido a sobrecalentamientos locales por efecto de la abrasión de los granos de las muelas.

En general la sensibilidad a la fisuración aumenta en la medida que disminuye la temperatura de revenido. Es conveniente utilizar refrigeración abundante, muelas con grano blando, velocidades adecuadas, y evitar sobrepresiones en las entradas de la muela a la herramienta.

ACERO DE HERRAMIENTAS TRABAJOS EN FRIO

1.2714

• Composición Química

С	Mn	Si	Ni	Cr	Мо	V	
0.50 0.60	0.65 0.95	0.10 0.40	1.50 1.80	1.00 1.20	0.45 0.55	0.07 0.12	

• Equivalencias Internacionales

W.nr	1.2714
Din 17350	56NiCMoV7
AFNOR	55NCDV7
UNI	56NiCrMoV7KU
AISI/SAE	L6
EN	55NiCrMoV7
SIAU	M10EX

Características Generales

Acero de media aleación CrNiMoV, de alto límite elástico y gran resistencia a los choques térmicos y mecánicos a temperatura de trabajo. Desarrollado para su utilización en estampas/matrices para martillos de estampación en caliente a temperaturas de servicio medias.

Se caracteriza por su elevada templabilidad y tenacidad, buena resistencia a los impactos repetidos, discreta insensibilidad a las variaciones térmicas y buena resistencia al desgaste.

Aplicaciones

Acero para herramientas de trabajos en caliente sometidas a temperaturas medias (200-450°C) con fuertes exigencias mecánicas de choque y desgaste. Admite refrigeración en servicio. Herramientas para:

- Matrices/Estampas de cualquier dimensión para martillos de estampar en caliente con diferentes profundidades de grabado.
- Contramatrices de extrusión.
- Portamatrices y matrices para prensa de forja.
- Moldes de plástico, punzones, anillos, etc...

Estado de Suministro

Recocido =< 240HB.

Bonificado = $1200 - 1400 \text{ N/mm}^2$

• Tratamientos Térmicos de uso

Eliminación de tensiones: Después del mecanizado en desbaste es necesaria la realización de un tratamiento de eliminación de tensiones, que consiste en una calentamiento lento y homogéneo en toda la masa a temperatura de 650°C, enfriamiento posterior lento hasta 500°C, y finalmente al aire en calma hasta temperatura ambiente.

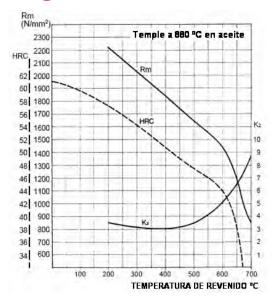
Temple:

- **Precalentamiento:** Calentar las piezas homogéneamente con mantenimiento de igualación a temperatura 650°C.
- **Austenización:** La tª de austenización estará comprendida entre 850 y 880°C con mantenimiento en función del espesor de la pieza. (mínimo 1/2 hora/pulgada).

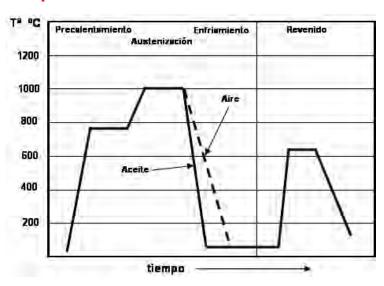
- Enfriamiento:

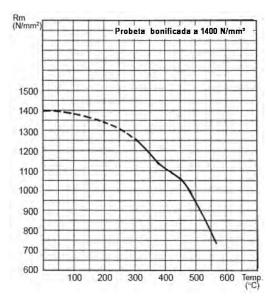
- En aire forzado para pequeñas secciones.
- En baño de aceite (máxima dureza).
- Temple martensítico (Martempering) con mínimas deformaciones.

Dureza de trabajo: Las durezas que se obtienen tras el temple son de 56/58 HRc.


Revenido: Se debe realizar inmediatamente después del temple. La temperatura deberá ser superior a la prevista en servicio y se determinará de acuerdo al diagrama de revenido. El tiempo de permanencia será como mínimo de 1 h. por pulgada de espesor. Es necesario realizar un segundo revenido a temperatura 30°C inferior al primero.

• Observaciones:


En estos ciclos térmicos, se deberá proteger la superficie de las piezas para evitar oxidaciones y/o descarburaciones.


Tratamiento	Temperatura (ºC)	Enfriamiento		
Eliminación de tensiones	650	Horno/Aire		
Precalentamiento	650	-		
Temple	850/880	Aceite		
Revenido	550/650	Aire		

• Esquema de secuencia en el tratamiento térmico

• Características mecánicas en caliente

NITRURACION

Este tipo de acero admite tratamiento de nitruración. Después del temple y revenido previos, a continuación se nitrurarán las piezas a 525°C, obteniéndose profundidades de capa entre 0,25 y 0,35 mm.

ELECTROEROSION

Este tipo de acero puede electroerosionarse en estado recocido o tratado. En este segundo caso es necesario dar un revenido posterior a una temperatura inferior a la del revenido.

RECTIFICADO

La operación de rectificado puede originar microfisuras en la superficie de las herramientas debido a sobrecalentamientos locales por efecto de la abrasión de los granos de las muelas.

En general la sensibilidad a la fisuración aumenta en la medida que disminuye la temperatura de revenido. Es conveniente utilizar refrigeración abundante, muelas con grano blando, velocidades adecuadas, y evitar sobrepresiones en las entradas de la muela a la herramienta.

<u>ACERO DE HERRAMIENTAS TRABAJOS EN CALIENTE</u>

1.2767

• Composición Química

С	Mn	Si	Ni	Cr	Мо	V	
0.40	0.15	0.10	3.80	1.20	0.15	0.07	
0.50	0.45	0.40	4.30	1.50	0.35	0.12	

• Equivalencias Internacionales

W.nr	1.2767
Din 17350	X45NiCrMo4
AFNOR	Y35NCD16
UNI	. 40NiCrMoV16KU
SIAU	MA

Características Generales

Acero al Ni Cr Mo que se caracteriza por una elevada templabilidad y tenacidad.

Presenta alto límite elástico y gran resistencia a los choques térmicos y mecánicos a temperatura de trabajo.

Adecuado para la construcción de útiles sometidos durante su ejercicio a impactos repetidos y fuertes presiones.

El 1.2767 es autotemplante y se emplea profusamente en la fabricación de toda clase de estampas para trabajo en caliente y de moldes permanentes.

Aplicaciones

Se emplea para la fabricación de Herramientas para:

- Estampas y matrices para herramientas de trabajos en caliente sometidas a fuertes solicitaciones.
- Yunques para martillos, mazas y martinetes.
- Moldes para elaboraciones en frío para cubiertos, orfebrería y materias plásticas.

Estado de Suministro

Recocido =<270HB.

Bonificado = 1100 -1300 N/mm²

• Tratamientos Térmicos de uso

Eliminación de tensiones: Después del mecanizado en desbaste es necesaria la realización de un tratamiento de eliminación de tensiones, que consiste en una calentamiento lento y homogéneo en toda la masa a temperatura de 650°C, enfriamiento posterior lento hasta 500°C, y finalmente al aire en calma hasta temperatura ambiente.

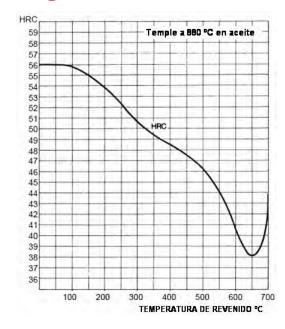
Temple:

- **Precalentamiento:** Calentar las piezas homogéneamente con mantenimiento de igualación a temperatura 650/700°C.
- **Austenización:** La tª de austenización estará comprendida entre 850 y 880°C con mantenimiento en función del espesor de la pieza (mínimo 1/2 hora/pulgada).

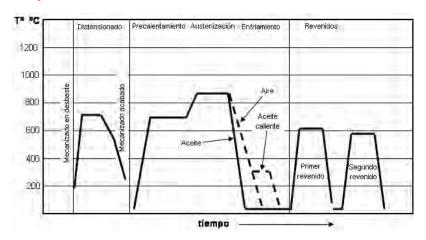
- Enfriamiento:

- En aire forzado.
- En baño de aceite (máxima dureza).
- Temple martensítico (Martempering) con mínimas deformaciones.

Dureza de trabajo: Las durezas que se obtienen tras el temple son de 55/57 HRc.


Revenido: Se debe realizar, al aire, inmediatamente después del temple. La temperatura deberá ser superior a la prevista en servicio y se determinará de acuerdo al diagrama de revenido. El tiempo de permanencia será como mínimo de 1 h. por pulgada de espesor. Es necesario realizar un segundo revenido a temperatura 30°C inferior al primero.

• Observaciones:


En estos ciclos térmicos, se deberá proteger la superficie de las piezas para evitar oxidaciones y/o descarburaciones.

Tratamiento	Temperatura (ºC)	Enfriamiento		
Eliminación de tensiones	650	Horno/Aire		
Precalentamiento	650/700	-		
Temple	850/880	Aire/Aceite		
Revenido	550/630	Aire		

• Esquema de secuencia en el tratamiento térmico

NITRURACION

Este tipo de acero admite tratamiento de nitruración. Después del temple y revenido previos, a continuación se nitrurarán las piezas a 525°C, obteniéndose profundidades de capa entre 0,25 y 0,35 mm.

ELECTROEROSION

Este tipo de acero puede electroerosionarse en estado recocido o tratado. En este segundo caso es necesario dar un revenido posterior a una temperatura inferior a la del revenido.

RECTIFICADO

La operación de rectificado puede originar microfisuras en la superficie de las herramientas debido a sobrecalentamientos locales por efecto de la abrasión de los granos de las muelas.

En general la sensibilidad a la fisuración aumenta en la medida que disminuye la temperatura de revenido. Es conveniente utilizar refrigeración abundante, muelas con grano blando, velocidades adecuadas, y evitar sobrepresiones en las entradas de la muela a la herramienta.

ACERO DE HERRAMIENTAS RÁPIDOS

1.3343

Composición Química

С	Мо	Cr	V	W
0.86	4.70	3.80	1.70	6.00
0.94	5.20	4.50	2.00	6.70

• Equivalencias Internacionales

W.nr	1.3343
Din 17350	S 6.5.2
AFNOR Z85WDCV06	5.05.04.02
UNI	H 6.5.2
AISI/SAE	M2
BS	BM2
SIAU	M2

Características Generales

El 1.3343 es un acero rápido de alto rendimiento y uno de los más utilizados en la fabricación de útiles de corte rápido.

Se caracteriza por su elevada resistencia al desgaste, discreta resistencia al ablandamiento a alta temperatura y una buena tenacidad.

A pesar de su alto contenido en Mo su propensión a la descarburación no es muy elevada aunque deben tomarse precauciones para evitarla.

Las características más significativas son:

- Elevada resistencia al desgaste.
- Elevada tenacidad.
- Buena resistencia a alta temperatura.

Aplicaciones

Se utiliza para la fabricación de grandes series de herramientas sometidas a solicitaciones dinámicas:

- Puntas helicoidales, machos, terrajas, limas, fresas, etc...
- Moldes y herramientas para el troquelado fino y para la extrusión en frío.

Estado de Suministro

Recocido de Ablandamiento < 260HB.

• Tratamientos Térmicos de uso

Eliminación de tensiones: Después del mecanizado en desbaste es necesaria la realización de un tratamiento de eliminación de tensiones, que consiste en una calentamiento lento y homogéneo en toda la masa a temperatura de 600/650°C, con enfriamiento posterior lento hasta temperatura ambiente.

Temple:

- **Precalentamiento:** Con objeto de reducir las tensiones de origen térmico, calentar las piezas homogéneamente con mantenimiento de igualación a temperaturas de 500/550°C y 800/850°C.
- Austenización: La t^a de austenización estará comprendida entre 1200 y 1220°C con mantenimiento en función del espesor de la pieza. (ver Tabla).

- Enriamiento:

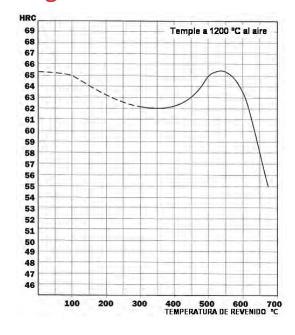
- En aire.
- En baño de aceite.
- Baño de sales a 530/580°C.

Dureza de trabajo: Las durezas que se obtienen tras el temple son de 64/65 HRc.

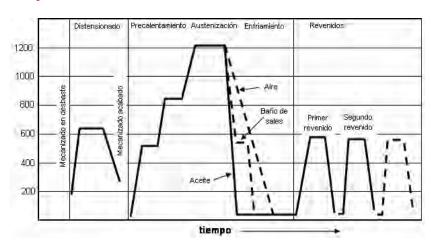
Revenido: Se debe realizar inmediatamente después del temple. La máxima dureza y resistencia se obtiene tras revenido a 530/550°C, no obstante, la aplicación de una temperatura más elevada permite obtener una mayor tenacidad. Hay que realizar, siempre, un segundo revenido a una temperatura igual o ligeramente inferior respecto al anterior. Puede, en algunas ocasiones, ser recomendable un tercer revenido. El tiempo de permanencia de cada uno de ellos será de 2 h. por pulgada de espesor, seguido de enfriamiento al aire en calma.

Observaciones:

En estos ciclos térmicos, se deberá proteger la superficie de las piezas para evitar oxidaciones y/o descarburaciones.



Tratamiento	Temperatura (ºC)	Enfriamiento		
Eliminación de tensiones	600/650	Horno/Aire		
Precalentamiento	500-550/800-850	-		
Temple	1200/1220	Aire/Aceite/Sales		
Revenido	530/580	Aire		


Tiempo Austenización (minutos/segundos)

Diametro máximo pieza (mm.)	6	12	18	25	37	50	75	100	125
	2'15" a	3" a	3'45" a	4'30" a	6' a	7'30" a	10' a	13' a	15'30" a
	2'30"	4'	5'	6'	7'30"	9'	12'	15'	18'

• Diagrama de revenido

• Esquema de secuencia en el tratamiento térmico

ELECTROEROSION

Este tipo de acero puede electroerosionarse en estado recocido o tratado. En este segundo caso es necesario dar un revenido posterior a una temperatura inferior a la del revenido.

RECTIFICADO

La operación de rectificado puede originar microfisuras en la superficie de las herramientas debido a sobrecalentamientos locales por efecto de la abrasión de los granos de las muelas.

Es conveniente utilizar refrigeración abundante, muelas con grano blando, velocidades adecuadas, y evitar sobrepresiones en las entradas de la muela a la herramienta.

ACERO DE HERRAMIENTAS MOLDES PARA PLASTICO

1.2311

• Composición Química

С	Mn	Si	Cr	Мо
0.35	1.30	0.20	1.80	0.15
0.45	1.60	0.40	2.10	0.25

• Equivalencias Internacionales

W.nr	1.2311
Din 17350	40CrMnMo7
AFNOR	35CMD7
SIAU	2311

Características Generales

Acero de media aleación CrMnMo que presenta una óptima penetración de temple adecuado para secciones de hasta 400 mm. aproximadamente.

La templabilidad que le confieren los elementos de aleación permite una homogeneidad de durezas tras el tratamiento térmico, pudiéndose por tanto, emplear en gran número de moldes para inyección de plástico de dimensiones medias.

Generalmente, se suministra en estado bonificado presentando buena resistencia al desgaste y a la compresión. Asimismo, presenta buena aptitud al fotograbado y pulido.

Se puede nitrurar, cromar y niquelar.

Aplicaciones

Se emplea principalmente en estado bonificado, para la fabricación de moldes de plástico por inyección con exigencia de óptimo acabado superficial. Moldes de aleaciones ligeras con bajo punto de fusión y, en general, en todas aquellas aplicaciones en la que no se requieran altas durezas o elevadas temperaturas de trabajo, placas, portamoldes, etc...

• Estado de Suministro

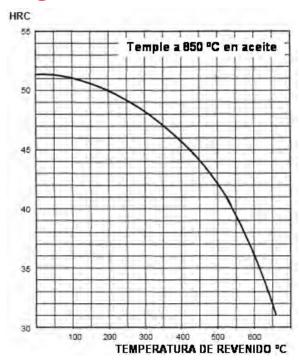
Recocido =< 230HB.

Bonificado = 280-325HB.

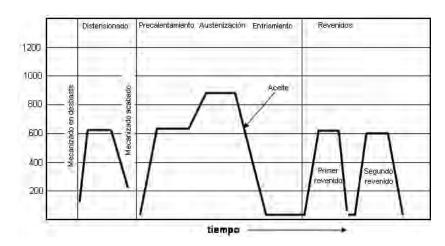
• Tratamientos Térmicos de uso

Eliminación de tensiones: Después del mecanizado en desbaste es necesaria la realización de un tratamiento de eliminación de tensiones, que consiste en un calentamiento lento y homogéneo en toda la masa a temperatura de 650°C.

Temple:


- **Precalentamiento:** Calentar las piezas homogéneamente con mantenimiento de igualación a temperatura 600/650°C.
- **Austenización:** La tª de austenización estará comprendida entre 840 y 870°C con mantenimiento en función del espesor de la pieza (mínimo 1/2 hora/pulgada).
- Enriamiento:
 - En baño de aceite.

Dureza de trabajo: Las durezas que se obtienen trás el temple son de 50/51 HRc.


Revenido: Se debe realizar inmediatamente después del temple. La temperatura deberá estar comprendida entre 580-650°C. El tiempo de permanencia será como mínimo de 1 h. por pulgada de espesor. Se recomienda realizar un segundo revenido.

Tratamiento	Temperatura (ºC)	Enfriamiento
Eliminación de tensiones	650	Horno/Aire
Precalentamiento	600/650	-
Temple	840/870	Aceite
Revenido	580/650	Aire

• Esquema de secuencia en el tratamiento térmico

NITRURACION

Este tipo de acero admite tratamiento de nitruración después del temple y revenido. Se consiguen durezas superficiales >800HV.

ELECTROEROSION

Este tipo de acero puede electroerosionarse en estado recocido o tratado. En este segundo caso es necesario dar un revenido posterior a una temperatura inferior a la del revenido.

ACERO DE HERRAMIENTAS MOLDES PARA PLASTICO

1.2312

• Composición Química

С	Mn	Si	S	Cr	Мо
0.35	0.40	0.30	0.05	1.80	0.15
0,45	1.60	0.50	0.10	2.00	0.25

• Equivalencias Internacionales

Din 17350	40CrMnMoS8.6
W.nr	1.2312
AFNOR	40CMD8S
SIAU	2312

Características Generales

Acero de media aleación CrMnMo que se diferencia del 1.2311 por su alto contenido en S. El alto porcentaje de este elemento le confiere alta maquinabilidad incluso en estado bonificado.

Se puede utilizar para moldes de materias plásticas, incluso de grandes dimensiones, siempre que las características de acabado superficial no sean exigentes, no obstante, su utilización habitual es la de placas y portamoldes.

Generalmente se suministra en estado bonificado. Se puede nitrurar y cromar.

Aplicaciones

Se emplea principalmente en estado bonificado, para la fabricación de moldes de plástico por inyección sin alta exigencia de acabado superficial.

Moldes de aleaciones ligeras con bajo punto de fusión, y en general, en todas aquellas aplicaciones en la que no se requieran altas durezas o elevadas temperaturas de trabajo, placas, portamoldes, etc...

Estado de Suministro

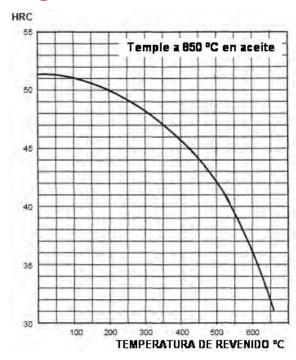
Recocido =<230HB.

Bonificado = 280-325HB.

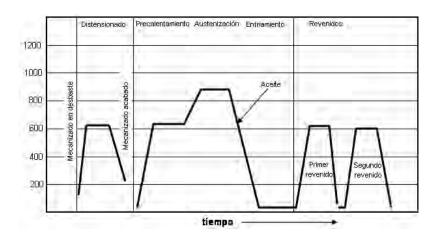
• Tratamientos Térmicos de uso

Eliminación de tensiones: Después del mecanizado en desbaste es necesaria la realización de un tratamiento de eliminación de tensiones, que consiste en un calentamiento lento y homogéneo en toda la masa a temperatura de 650°C.

Temple:


- **Precalentamiento:** Calentar las piezas homogéneamente con mantenimiento de igualación a temperatura 600/650°C.
- **Austenización:** La tª de austenización estará comprendida entre 840 y 870°C con mantenimiento en función del espesor de la pieza (mínimo 1/2 hora/pulgada).
- Enriamiento:
 - En baño de aceite.

Dureza de trabajo: Las durezas que se obtienen tras el temple son de 50/51 HRc.


Revenido: Se debe realizar inmediatamente después del temple. La temperatura deberá estar comprendida entre 580-650°C. El tiempo de permanencia será como mínimo de 1 h. por pulgada de espesor. Se recomienda realizar un segundo revenido.

Tratamiento	Temperatura (ºC)	Enfriamiento
Eliminación de tensiones	650	Horno/Aire
Precalentamiento	600/650	-
Temple	840/870	Aceite
Revenido	580/650	Aire

• Esquema de secuencia en el tratamiento térmico

NITRURACION

Este tipo de acero admite tratamiento de nitruración después del temple y revenido. Se consiguen durezas superficiales >800HV.

ELECTROEROSION

Este tipo de acero puede electroerosionarse en estado recocido o tratado. En este segundo caso es necesario dar un revenido posterior a una temperatura inferior a la del revenido.

DELEGACIONES

BIZKAIA	Astola	Tel. 902 20 40 02	Fax 902 20 40 12	abastola@ims-group.com
	Abadiño	Tel. 902 20 40 01	Fax 902 20 40 11	abcentral@ims-group.com
GIPUZKOA - ALAVA NAVARRA - RIOJA	Astola	Tel. 902 20 40 02	Fax 902 20 40 12	abastola@ims-group.com
BARCELONA	Barberá del Valles	Tel. 902 20 40 08	Fax 902 20 40 18	barcelona@ims-group.com
MADRID	Leganés	Tel. 902 20 40 09	Fax 902 20 40 19	madrid@ims-group.com
ZARAGOZA	Zaragoza	Tel. 976 41 90 00	Fax 976 59 34 18	zaragoza@ims-group.com
ASTURIAS	Viella - Siero	Tel. 985 26 05 50	Fax 985 26 00 62	asturias@ims-group.com
VALENCIA	Valencia	Tel. 961 41 34 50	Fax 961 41 24 00	valencia@ims-group.com
CASTILLA - LEÓN	Valladolid	Tel. 983 30 35 04	Fax 983 30 39 25	valladolid@ims-group.com
SEVILLA	Sevilla	Tel. 955 49 05 00	Fax 955 49 05 01	sevilla@ims-group.com
EXPORTACIÓN	Abadiño	Tel. +34 94 623 20 36	Fax +34 94 621 52 47	export-aceros@ims-group.com